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Remark: the proofs in this Appendix are identical regardless of which
j ∈ {1, 2} is used to defined Hj and all the related quantities, so long as
the same j is used throughout. So, in what follows, the subscript j should
be understood as fixed at either 1 or 2, and all the estimators and related
random quantities be assumed to have been computed fixing j at the given
value.

Sketch of the optimality of sopt and qopt

We will first prove that Σq,s − Σq,sopt,j
is positive semidefinite. Define

Aj (β, α) = q (V ;β) (−1)
1−Z

p (Z|X;α)
−1
Hj (β)

and
M (β, α; s) = q (V ;β) s (X) (−1)

1−Z
p (Z|X;α)

−1
.

Then, β̂s solves En {Aj (β, α̂)−M (β, α̂; s)} = 0. Assume throughout that
model (7) of the paper holds and let α0 be the true value of α. Assume
also that and 0 < σ1 < p (Z = 1|X) < σ2 < 1 for some σ1 and σ2. This
condition implies that var {Aj (β, α0)} and var {aj (X)} are both finite
when, as we will assume throughout this Appendix, var (Y ) , var {q (V ;β)}
and var (mj (V ;β)) are finite. It follows from standard Taylor expansion
arguments for M−estimators that

√
n
(
β̂s − β0

)
= I−1j

√
nEn {A0,j −M0 (s)−ΨjS}+ op (1)

whereM0 (s) = M (β0, α0; s) , A0,j = Aj (β0, α0) , Ij = ∂
∂β′ E {Aj (β, α0)}|β=β0

,

S = ∂ log p (Z|X;α) /∂α|α=α0
and Ψj = E [{A0,j −M0 (s)}S′] var (S)

−1
.
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When 0 < σ1 < p (Z = 1|X) < σ2 < 1, then A0,j −M0 (s) − ΨjS has
finite variance, provided, as we assume throughout that Y and mj (V ;β0)

have finite variance. Then, by the Central Limit Theorem,
√
n
(
β̂s − β0

)
converges in law to a mean zero normal distribution with variance equal
to

Σq,s = I−1j var {A0,j −M0 (s)−ΨjS}
(
ITj
)−1

Now, the space

Λ = {M0 (s̃) : s̃ arbitrary real valued}

is the same as the space

{g (Z,X) : E {g (Z,X) |X} = 0, g arbitrary real valued}

and a quick check shows that

M0 (sopt,j) = E (A0,j |X,Z)− E (A0,j |X) .

So,M0 (sopt,j) is the vector whose lth element is the projection of the lth en-
try ofA0,j into the space Λ, i.e. M0 (sopt,j) satisfies E {(A0,j −M0 (sopt,j))M0 (s̃)} =
0 for all M0 (s̃) ∈ Λ. Then,
Ψopt,j = E [{A0,j −M0 (sopt,j)}S′] var (S)

−1
= 0 because each entry of S

is an element of Λ. Consequently,

Σq,sopt,j
= I−1j var {A0,j −M0 (sopt,j)}

(
ITj
)−1

.

Finally, Σq,s−Σq,sopt,j
= var {A0,j −M0 (s)−ΨjS}−var {A0,j −M0 (sopt,j)}

≥ 0 because each entry of the vector M0 (s) + ΨjS is an element of Λ.

We turn now to the proof that Σq,sopt,j
−Σqopt,j,sopt,j

is positive semidef-
inite.

For any given q (V ;β) , let q0 (V ) = q (V ;β0) . Also, define εj (β) =

(−1)
1−Z

p (Z|X)
−1 {Hj (β)− sopt,j (X)} , εj = εj (β0) ,∆j (V ) = E

{
∂
∂β εj (β)

∣∣∣
β0

∣∣∣∣V}
and σ2

j (V ) = E
(
ε2j |V

)
. With these definitions A0,j −M0 (sopt,j) = q0 (V )
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εj and Ij = E
{

∆j (V ) q0 (V )
T
}
. Then,

{
Σq,sopt,j

}−1
= E

{
∆j (V ) q0 (V )

T
}
E
{
σ2
j (V ) q0 (V ) q0 (V )

T
}−1

E
{
q0 (V ) ∆j (V )

T
}

= E

[
∆j (V )

σj (V )
{q0 (V )σj (V )}T

]
E
{
σ2
j (V ) q0 (V ) q0 (V )

T
}−1

×E

[
{q0 (V )σj (V )}

{
∆j (V )

σj (V )

}T]
= var {Π [∆j (V ) /σj (V )| 〈q0 (V )σj (V )〉]}

≤ E
[
{∆j (V ) /σj (V )} {∆j (V ) /σj (V )}T

]
= E

{
∆j (V ) q∗j (V )

T
}
E
{
σ2
j (V ) q∗j (V ) q∗j (V )

T
}−1

E
{
q∗j (V ) ∆ (V )

T
}

=
{

Σq∗,sopt,j

}−1
where q∗j (V ) = ∆j (V ) /σ2

j (V ) and

Π

[
∆j (V )

σj (V )

∣∣∣∣ 〈q0 (V )σj (V )〉
]

=E

[{
∆j (V )

σj (V )

}
{q0 (V )σj (V )}T

]
× E

{
σ2
j (V ) q0 (V ) q0 (V )

T
}−1

q0 (V )σj (V )

is the predicted value from the population multivariate least squares regres-
sion of ∆j (V ) /σj (V ) on the linear span of q0 (V )σj (V ). We therefore
conclude that q∗j is the optimal function q. To finalize the proof we need
to confirm that q∗ (V ) = qopt (V ) .

First note that ∂Hj (β) /∂β = −{∂mj (V ;β) /∂β}mj (V ;β)
2(1−j)

DY j−1.
Then

∆j (V ) = E

{
∂

∂β
εj (β)

∣∣∣∣
β0

∣∣∣∣∣V
}

= E

{
(−1)

1−Z
p (Z|X)

−1 ∂

∂β
Hj (β)

∣∣∣∣
β0

∣∣∣∣∣V
}

= E
[
(−1)

1−Z
p (Z|X)

−1
{
−{∂mj (V ;β) /∂β}|β0

}
mj (V ;β)

2(1−j)
DY j−1

∣∣∣V ]
= − ∂

∂β
mj (V ;β)

∣∣∣∣
β0

mj (V ;β)
2(1−j)

E
{

(−1)
1−Z

p (Z|X)
−1
DY j−1

∣∣∣V } .
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and

σj (V )
2

= E

([
(−1)

1−Z
p (Z|X)

−1 {Hj (β)− sopt,j (X)}
]2∣∣∣∣V )

= E
(
p (Z|X)

−2 {Hj (β)− sopt,j (X)}2
∣∣∣V )

This concludes the proof.

Sketch of the proof that β̂dr is locally efficient

We now sketch the proof that when the specifications (11) and (13) if V 6=
X or (14) if V = X hold, and specification (7) of the paper hold, and 0 <

σ1 < p (Z = 1|X) < σ2 < 1 for some σ1 and σ2,
√
n
(
β̂dr − β0

)
converges

in law to a mean zero normal distribution with variance equal to Σq,sopt,j

where β̂dr is the doubly robust estimator defined in section 3.2 of the
paper. Let η∗ =plimη̂

(
β̂dr

)
, γ∗ = plimγ̂ and s∗ (X) = a (X;α0, η

∗, γ∗). It
follows from standard Taylor expansion arguments for M-estimators that
under (7) and 0 < σ1 < p (Z = 1|X) < σ2 < 1 for some σ1 and σ2,

√
n
(
β̂dr − β0

)
= I−1j

√
nEn

{
A0,j −M0 (s∗)−Ψ∗jS

}
+ op (1)

where M0 (s) , A0,j , Ij and S are defined as in the preceding proof and
Ψ∗j = E [{A0,j −M0 (s∗)}S′] var (S)

−1
. When, in addition, (11) and (13)

hold if V 6= X or (14) if V = X hold we also have a (X;α0, η
∗, γ∗) =

sopt,j (X) , from where the claim follows because as showed in the preceding
proof, var

{
A0,j −M0 (sopt,j)−Ψ∗jS

}
= Σq,sopt,j

.

Sketch of the proof that β̃dr is doubly-robust and has the efficiency
property stated in section 3.4

Assume throughout that 0 < σ1 < p (Z = 1|X) < σ2 < 1 for some
σ1 and σ2. With Aj (β, α) and M (β, α; s) defined as in the first proof
the estimator β̃dr solves En [Aj (β, α̂)] − Ĉ (β)

T
En [M (β, α̂; â (β))] = 0

where â (β) ≡ a (X; α̂, η̂ (β) , γ̂) . Let βdr be the solution of En [Aj (β, α)]−
C∗ (β)

T
En [M (β, α̂; â (β))] = 0 where C∗ (β) =plimĈ (β) . Under regular-

ity conditions, n1/2
(
β̃dr − βdr

)
= op (1) , so to show the claims made on

β̃dr it suffices to show that the same claims hold for βdr.
To show that βdr is doubly robust, first note that under the propensity

score model (7) given in the paper, En [M (β, α̂; â (β))] = op (1) , so βdr
converges to the solution of E [Aj (β, α0)] = 0 which is precisely β0. On
the other hand, to show the consistency of βdr when the specifications
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given in displays (11) and (13) if V 6= X or (14) if V = X hold, it suffices
to show that in such case C∗ (β0) is the identity matrix (since then βdr
is equal to the double robust estimator β̂dr described in section 3.2 of the
paper. To show that C∗ (β0) is the identity matrix note that it is the p×p
matrix formed by the first p columns of the p × (p+ r) matrix D1D

−1
2

where
D1 = E {Aj (β0, α

∗)K (β0)} (1)

and

D2 = E

([
q (V ;β0) (−1)

1−Z
p (Z|X;α∗)

−1
h (Z,X; η0)

∂ log p (Z|X;α) /∂α|α=α∗

]
×K (β0)

)
(2)

and α∗ =plimα̂. When the specifications given in displays (11) and (13)
if V 6= X or (14) if V = X hold, plimη̂ (β0) = η0 and plimγ̂ = γ0 where
(η0, γ0) satisfy h (Z,X; η0; γ0) = E (Hj |Z,X). Then,

D1 = E
{
q (V ;β0) (−1)

1−Z
p (Z|X;α∗)

−1
h (Z,X; η0)K (β0)

}
Thus C∗ (β0) is the p× p identity matrix because D1 is the p× (p+ r)

upper block of the (p+ r)× (p+ r) matrix D2.
We will now prove that when the propensity score parametric specifi-

cation (7) of the paper holds then β̃dr is at least as efficient asymptotically
as any estimator β̂C solving En [Aj (β, α̂)] − CTEn [M (β, α̂; â (β))] = 0
for an arbitrary p × p matrix C. Henceforth assume model (7) holds
and let α0 be the true value of α. Let η∗ (β) =plimη̂ (β) , γ∗ =plimγ̂,
a∗ (x;β) =plima (x; α̂, η∗ (β) , γ∗) andM∗0 = q (V ;β0) a∗j (X;β0) (−1)

1−Z
p (Z|X;α0)

−1
.

It follows from standard Taylor expansion arguments for M−estimators
that

√
n
(
β̂C − β0

)
= I−1j

√
nEn {A0,j − CM∗0 −ΨC,jS}+ op (1)

where A0,j , Ij and S are defined as in the first proof of this Appendix and
ΨC,j = E [{A0,j − CM∗0 }S′] var (S)

−1
. On the other hand,

√
n
(
βdr − β0

)
= I−1j

√
nEn {A0,j − C∗M∗0 −ΨC∗,jS}+ op (1)

where C∗ = C∗ (β0), is the p× p matrix formed by the first p columns of
the p× (p+ r) matrix D1D

−1
2 with D1 and D2 as in display (2) with α0

instead of α∗. So, it suffices to show that

var {A0,j − CM∗0 −ΨC,jS} − var {A0,j − C∗M∗0 −ΨC∗,jS} ≥ 0 (3)

When model (7) holds, D1D
−1
2 is the same as

B = E
{
A0,j

[
M∗T0 , ST

]}
var

{[
M∗T0 , ST

]T}−1
, i.e. the least squares con-

stant in the population regression of A0j onM∗0 and S. Furthermore, write
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B = [B1, B2] where B1 is p× p and B2 is p× r. Then, by definition, C∗ =
B1 and consequently, by the minimum variance property of the regression
residual, we have

var {A0,j − C∗M∗0 −B2S} ≤ var {A0,j − C∗M∗0 −ΨC∗,jS}

On the other hand, by definition, ΨC∗,j is the least squares constant in
the population regression of A0,j − C∗M0 on S. Therefore

var {A0,j − C∗M∗0 −ΨC∗,jS} ≤ var {A0,j − C∗M∗0 −B2S}

We thus conclude that var {A0,j − C∗M∗0 −ΨC∗,jS} = var {A0,j −B1M
∗
0 −B2S} .

Now, by definition of B = [B1, B2] , var {A0,j −B1M
∗
0 −B2S}−

var {A0,j −B∗1M∗0 −B∗2S} is negative semidefinite for any conformable
matrices B∗1 and B∗2 , in particular, for the choices B∗1 = C and B∗2 = ΨC,j .
This proves that (3) is positive semidefinite.

Best least squares approximations when the parametric specifica-
tions for LATE(V) and MLATE(V) are incorrect

Let G1 (β) ≡ E
[
w (V ) {LATE (V )−m1 (V ;β)}2 |D1 > D0

]
and βw,0 ≡

arg minβ G1 (β) . Assuming G1 (β) is differentiable at βw,0 and that dif-
ferentiation can be exchanged with integration we have that βw,0 solves
Q1 (β) = 0 whereQ1 (β) = E

[
∂m1(V ;β)

∂β w (V ) {LATE (V )−m1 (V ;β)}
∣∣∣D1 > D0

]
.

Now, under the IV assumptions we have

Q1 (β)P (D1 > D0)

= E

[
∂m1 (V ;β)

∂β
w (V ) {LATE (V )−m1 (V ;β)}

∣∣∣∣D1 > D0

]
P (D1 > D0)

= E

[
∂m (V ;β)

∂β
w (V ) {LATE (V )−m1 (V ;β)}E (D1 −D0|X)

]
= E

[
(−1)

1−Z

p (Z|X)

∂m (V ;β)

∂β
w (V ) {IV (V )−m1 (V ;β)}D

]

= E

[
(−1)

1−Z

p (Z|X)

∂m (V ;β)

∂β
w (V ) {H1 (β)−H1}

]

= E

{
(−1)

1−Z

p (Z|X)

∂m (V ;β)

∂β
w (V )H1 (β)

}
thus showing that βw,0 satisfies equation (22) of the paper.

An estimator ̂̂βopt,dr which satisfies property (a) of section 3.4 of the
paper and which has limiting normal distribution with variance equal to
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Σqopt,1,sopt,1 when conditions (i) and (ii) of section 3.3 of the paper hold
and the specifications (19) and (20) of the paper are correct, and yet it
converges to a weighted least squares approximation when the parametric
specification for LATE (V ) is wrong is computed just as ̂̂βdr in section 3.3
of the paper but replacing in every step of its construction qw (v;β) with
the function q̂opt,1 (v;β) defined in section 3.3. When the specification

for LATE (V ) is wrong ̂̂βopt,dr converges in probability to βw∗,0 where
w∗ (V ) = e1 (V ; δ∗) t1 (V ;ω∗)

−1 with δ∗ = plim δ̂ and ω∗ = plim ω̂.

Next, letG2 (β) ≡ E
[
e0 (V )w (V ) {< LATE (V )−m2 (V ;β)}2 |D1 > D0

]
where e0 (V ) = E (Y0|D1 > D0, V ) and redefine βw,0 ≡ arg minβ G2 (β) .
Assuming G2 (β) is differentiable at βw,0 and that differentiation can be
exchanged with integration we have that βw,0 solves Q2 (β) = 0 where
Q2 (β) = E

[
∂m2(V ;β)

∂β e0 (V )w (V ) {MLATE (V )−m2 (V ;β)}
∣∣∣D1 > D0

]
.

Under the IV assumptions

Q2 (β)P (D1 > D0)

=E

[
w (V )

∂m2 (V ;β)

∂β
E (Y0|D1 > D0, V ) {MIV (V )−m2 (V ;β)}

∣∣∣∣D1 > D0

]
P (D1 > D0)

=E

[
w (V )

∂m2 (V ;β)

∂β
MIV (V )

−1
E (Y1|D1 > D0, V ) {MIV (V )−m2 (V ;β)}

∣∣∣∣D1 > D0

]
× P (D1 > D0)

=E

[
w (V )

∂m2 (V ;β)

∂β
MIV (V )

−1
E {Y1 × (D1 −D0) |V } {MIV (V )−m2 (V ;β)}

]
=E

[
w (V )

(−1)
1−Z

p (Z|X)

∂m2 (V ;β)

∂β
MIV (V )

−1
Y D {MIV (V )−m2 (V ;β)}

]

=E

[
w (V )

(−1)
1−Z

p (Z|X)

∂m2 (V ;β)

∂β
m2 (V ;β)Y

{
m2 (V ;β)

−D −MIV (V )
−D
}]

=E

[
w (V )

(−1)
1−Z

p (Z|X)

∂m2 (V ;β)

∂β
m2 (V ;β) {H2 (β)−H2}

]

=E

{
w (V )

(−1)
1−Z

p (Z|X)

∂m2 (V ;β)

∂β
m2 (V ;β)H2 (β)

}

The form of the quantity inside the last expectation agrees with the form
of the quantity inside the last expectation of the previous display, except
that w (V ) is replaced with w (V )m2 (V ;β) and the subscript 1 is replaced

with the subscript 2. Thus, the estimator ̂̂βdr of section 3.4 computed
using H2 (β) instead of H1 (β) and with qw (V ;β) redefined as m2 (V ;β)×
{∂m2 (V ;β) /∂β} × w (V ) satisfies the properties claimed in the paper.
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Proof of the restrictions imposed by the IV assumptions (our model)
and by the Robins-Tan model.

First we prove that the only restrictions on the observed data law imposed
by assumptions (i)-(vi) (i.e. our model, as defined in section 4 of the paper)
beyond 0 < P (Z = 1|X) < 1 are

Pr (y < Y ≤ y′, D = 1|, Z = 1, X)−Pr (y < Y ≤ y′, D = 1|, Z = 0, X) ≥ 0,
(4)

Pr (y < Y ≤ y′, D = 0|, Z = 0, X)−Pr (y < Y ≤ y′, D = 0|, Z = 1, X) ≥ 0
(5)

and
E {E (D|Z = 1, X) |V } − E {E (D|Z = 0, X) |V } > 0. (6)

The proof that the inequalities (4) , (5) and (6) are implied by assumptions
(i)-(vi) hinges on the following identity (Imbens and Angrist, 1994), which
holds for any g (·) under the IV assumptions (i), (ii), (v) and (vi)

E {g (Y,D,X) |Z = 1, X} − E {g (Y,D,X) |Z = 0, X} (7)
= E [C {g (Y1, D1, X)− g (Y0, D0, X)} |X]

where C = D1 −D0. Letting g (Y,D,X) = D gives that (6) is equivalent
to E (C|V ) > 0, which follows from instrumentation (iv) and monotonicity
(v). Letting g (Y,D,X) = I (y ≤ Y ≤ y′, D = 1) gives that (4) is the same
as Pr (y ≤ Y1 ≤ y′, C = 1|X) ≥ 0, which holds because probabilities are
non-negative. Likewise, letting g (Y,D,X) = −I (y ≤ Y ≤ y′, D = 0) gives
that (5) is also the same as Pr (y ≤ Y0 ≤ y′, C = 1|X) ≥ 0.

To show that (4) , (5) and (6) and 0 < P (Z = 1|X) < 1 are the only
restrictions imposed on the observed data law by assumptions (i) - (vi),
first note that assumptions (i)-(v) determine a model, denoted herein as
A0, on the law of W = (Y0, Y1, D0, D1, Z,X) , defined by the restrictions

A.1 (Y0, Y1, D0, D1)q Z|X,
A.2 E (D1|V )− E (D0|V ) > 0 with probability 1,
A.3 D1 −D0 ≥ 0,
A.4 0 < P (Z = 1|X) < 1.

Under assumption (vi), the received treatment D is equal to the func-
tion u (D0, D1, Z) of (D0, D1, Z) defined by

u (D0, D1, Z) ≡
{

1 if D0 = 1 or if (Z = 1 and D1 −D0 = 1)
0 if D1 = 0 of if (Z = 0 and D1 −D0 = 1)

and the observed outcome Y is equal to the function s (W ) of W defined
by
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s (W ) =

{
Y1 if u (D0, D1, Z) = 1
Y0 if u (D0, D1, Z) = 0.

So, under (vi) we have that the joint distribution of (Y,D) given (Z,X)
is determined by the equalities

Pr (y < Y ≤ y′, D = d|Z = z,X) (8)

=


Pr (y < Y1 ≤ y′, D1 = 1|Z = 1, X) if (d, z) = (1, 1)
Pr (y < Y1 ≤ y′, D0 = 1|Z = 0, X) if (d, z) = (1, 0)
Pr (y < Y0 ≤ y′, D1 = 0|Z = 1, X) if (d, z) = (0, 1)
Pr (y < Y0 ≤ y′, D0 = 0|Z = 0, X) if (d, z) = (0, 0)

Thus, to study the restrictions imposed on the conditional distribution
of (Y,D) given (Z,X) by (i)-(vi) we examine the restrictions imposed by
(A.1)-(A.4) on the conditional probabilities in the set

{Pr (y < Yd ≤ y′, Dz = d|Z = z,X) : y and y′ ∈ Y , z and d ∈ {0, 1}}
(9)

Assumption A.1 imposes the sole restriction that

Pr (y < Yd ≤ y′, Dz = d|Z = z,X) (10)
= Pr (y < Yd ≤ y′, Dz = d|X) , for y and y′ ∈ Y , z and d ∈ {0, 1} ,

So the set (9) is the same as the set

{Pr (y < Yd ≤ y′, Dz = d|X) : y and y′ ∈ Y , z and d ∈ {0, 1}} (11)

On this set, assumption A.3 imposes the sole restrictions

Pr (y < Y1 ≤ y′, D1 = 1|X) ≥ Pr (y < Y1 ≤ y′, D0 = 1|X) for y and y′ ∈ Y
(12)

Pr (y < Y0 ≤ y′, D1 = 0|X) ≤ Pr (y < Y0 ≤ y′, D0 = 0|X) for y and y′ ∈ Y
(13)

Inequality (12) and inequality (10) with d = 1 imply the sole restriction
(4) , whereas inequality (13) and inequality (10) with d = 0 imply the sole
restriction (5) . Finally, taking y = −∞ and y′ = +∞ in (8) , assumption
A.2 implies the sole restriction (6) .

Next we prove that the only restriction on the observed data law im-
posed by assumptions (i)-(iv), (v-ATT), and (vi) (i.e. by the Robins-Tan
model as defined in section 4 of the paper) is

E {P (D = 1|Z = 1, X) |V } 6= E {P (D = 1|Z = 0, X) |V } with probability 1.
(14)

Assumptions (i)-(iv) and (v-ATT) impose a model B0 on the law of W =
(Y0, Y1, D0, D1, Z,X) defined by the restrictions
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B.1 (Y0, Y1, D0, D1)q Z|X,
B.2 E (D1|V )− E (D0|V ) 6= 0 with probability 1,
B.3 0 < P (Z = 1|X) < 1.

Just as deduced earlier, assumption (vi) implies that the conditional
distribution of (Y,D) given (Z,X) is related to the counterfactual data
law through (8) . So, assumption B.1 once again implies that the set (9)
and (11) are equal. On this set, assumption B.2 imposes only a restriction
on the choice y = −∞ and y′ = +∞, namely

E [Pr (D1 = 1|X) |V ] 6= E [Pr (D0 = 1|X) |V ]

Taking y = −∞ and y′ = +∞ and d = 1 in (8) we conclude that the
only restriction implied by simultaneously assuming B.1 and B.2 on the
observed data law is (14) .

Proof of point (c) of section 4 of the paper

By point (b) of section 4 of the paper, the intersection model imposes
the same restrictions on the observed data law as our model. According
to the results in the preceding proof, these restrictions are the inequality
constraints (4) , (5) and (6) . On the other hand, also according to the
results in the preceding proof, the Robins-Tan model imposes solely the
inequality constraint (14) . This proofs the assertion. Note that (14) is
implied by constraint (6) so, as far as models for the observed data law,
our model is indeed a submodel of the Robins-Tan model.

Proof of the variation independence of E
[
ϕ (X) |V

]
, E [H1|Z,X] and

p (Z|X) with IV (V ) and ofE
[
ϕ (X) |V

]
, E [H2|Z,X] , p (Z|X) withMIV (V )

Let Y be real or integer valued and have unbounded support. Let FO
be a given observed data law satisfying 0 < P (Z = 1|X) < 1 and the
restrictions in the preceding displays (4) , (5) and (6) (i.e. those implied by
the IV assumptions (i)-(vi)). Suppose that IV (v) is a given function of v,
say m1 (v) . Then, by definition, H1 = Y −m1 (V )D and by construction,
H1 satisfies the restriction

E {[E (H1|Z = 1, X)− E (H1|Z = 0, X) |V ]} = 0. (15)

This restriction is the same regardless of what the function m1 (·) is. Also,
restrictions (5) , (4) and (6) of the preceding subsection are equivalent to
the restrictions that for all y < y′ in the real line,

Pr (y −m1 (V ) < H1 ≤ y′ −m1 (V ) , D = 1|Z = 1, X)

−Pr (y −m1 (V ) < H1 ≤ y′ −m1 (V ) , D = 1|Z = 0, X) ≥ 0
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and

Pr (y < H1 ≤ y′, D = 0|Z = 0, X)−Pr (y < H1 ≤ y′, D = 0|Z = 1, X) ≥ 0

which is equivalent to the restriction that for all h < h′ in the real line,

Pr (h < H1 ≤ h′, D = 1|Z = 1, X)−Pr (h < H1 ≤ h′, D = 1|Z = 0, X) ≥ 0

Pr (h < H1 ≤ h′, D = 0|Z = 0, X)−Pr (h < H1 ≤ h′, D = 0|Z = 1, X) ≥ 0

This restriction is the same regardless of what the function m1 (·) is. Fi-
nally, regardless of what m1 (·) is, H1 has unbounded support because Y
has unbounded support. So, all restrictions on the law of H1 are the same
regardless of what the value of m1 (·) is. Consequently, the range of possi-
ble values taken by E (H1|Z,X) is the same regardless of what m1 (·) is.
This, in turn, implies that the set of permissible laws of X|V is the same
regardless of the functional form m1 (·) as (15) is the only restriction on
the law of X|V . Finally, the functional IV (V ) depends only on the law of
(Y,D) |Z,X and on the law of X|V but not on the law of p (Z|X), which
proofs then that IV (V ) is variation independent with p (Z|X) .

Next consider Y with support equal to either [0,∞) or the non-negative
integers. Let FO be a given observed data law satisfying the restrictions im-
plied by assumptions (i)-(vii). These restrictions are 0 < P (Z = 1|X) <
1, the restrictions (5) , (4) and (6) of the preceding subsection (i.e. those
implied by the IV assumptions (i)-(vi)) and the restriction

E [Y (1−D) |Z = 1, X]− E [Y (1−D) |Z = 1, X] 6= 0 (16)

implied by (vii) (which follows by taking in (7) g (Y,D,X) = Y (1−D)).
Suppose that MIV (v) is a given function of v, say m2 (v) . Then,

H2 = Y m2 (V )
−D and by construction, H2 satisfies the restriction

E {[E (H2|Z = 1, X)− E (H2|Z = 0, X) |V ]} = 0

This restriction is the same regardless of what the function m2 (·) is. By
definition, m2 (v) > 0 because Y has support equal or included in [0,∞).
Thus, restrictions (5) , (4) and (6) of the preceding subsection are equiva-
lent to the restrictions that for all non-negative reals y < y′,

Pr
(
ym2 (V )

−1
< H2 ≤ y′m2 (V )

−1
, D = 1|Z = 1, X

)
−Pr

(
ym1 (V )

−1
< H2 ≤ y′m2 (V )

−1
, D = 1|Z = 0, X

)
≥ 0

and

Pr (y < H2 ≤ y′, D = 0|Z = 0, X)−Pr (h < H2 ≤ h′, D = 0|Z = 1, X) ≥ 0
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which, by virtue ofm2 (V ) being positive, are equivalent to the restrictions
that for all non-negative reals h < h′,

Pr (h < H2 ≤ h′, D = 1|, Z = 1, X)−Pr (h < H2 ≤ h′, D = 1|, Z = 0, X) ≥ 0

Pr (h < H2 ≤ h′, D = 0|Z = 0, X)−Pr (h < H2 ≤ h′, D = 0|Z = 1, X) ≥ 0

These restrictions are the same regardless of what the function m2 (·) is.
Likewise, restriction (16) is equivalent to restriction

E [H2 (1−D) |Z = 1, X]− E [H2 (1−D) |Z = 1, X] 6= 0 (17)

because H2 (1−D) = Y (1−D) . This restriction is not affected by the
value of m2 (·) .

Finally, H2 has support equal or included in [0,∞) because Y does
so and by definition m2 (v) > 0. So, all restrictions on H2 are the same
regardless of what the value of m2 (·) . Consequently, the range of possi-
ble values taken by E (H2|Z,X) is the same regardless of what m2 (·) .
The proof of the variation independence of f (X|V ) and p (Z|X) with
MIV (V ) is identical to the one given above for the variation indepen-
dence of f (X|V ) and p (Z|X) with IV (V ) .

Structural interpretations of E (Hj |z,X) under our model and under
the Robins-Tan model.

We will prove that under the Robins-Tan model,

E (H1|z,X) = E (Y0|X)− {ATT (V )−ATT (z,X)}Pr (Dz = 1|X) .

and under our model,

E (H1|z,X)

= E (Y0|X) + {E (Y0 − Y1|X,T = at)− LATE (X)}Pr (T = at|X)

+ {LATE (X)− LATE (V )} {z Pr (T ∈ {at, co} |X) + (1− z) Pr (T = ne|X)} .

Under the Robins-Tan model, we know that

E {Y −ATT (Z,X)D|Z,X} = E (Y0|Z,X)

Adding and subtracting ATT (V )D and using the fact that E (Y0|Z,X) =
E (Y0|X) we have

E [H1 + {ATT (V )−ATT (Z,X)}D|Z,X] = E [Y0|X]

where H1 = Y −ATT (V )D, or equivalently

E (H1|Z,X) = E (Y0|X)− {ATT (V )−ATT (Z,X)}E (D|Z,X)

= E (Y0|X)− {ATT (V )−ATT (Z,X)}E (DZ |Z,X)
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So,

E (H1|Z = z,X) = E (Y0|X)− {ATT (V )−ATT (z,X)}E (Dz|Z = z,X)

= E (Y0|X)− {ATT (V )−ATT (z,X)}E (Dz|X)

thus showing that

E (H1|z,X) = E (Y0|X)− {ATT (V )−ATT (z,X)}Pr (Dz = 1|X) .

Now we show that under our model

E (H1|z,X)

= E (Y0|X) + {E (Y0 − Y1|X,T = at)− LATE (X)}Pr (T = at|X)

+ {LATE (X)− LATE (V )} {z Pr (T ∈ {at, co} |X) + (1− z) Pr (T = ne|X)} .

Let T be the variable denoting compliance type. We have

E {Y − LATE (X)D|Z,X} =

= E {Y − LATE (X)D|T = co, Z,X}Pr (T = co|Z,X) +

E {Y − LATE (X)D|T = at, Z,X}Pr (T = at|Z,X) +

E {Y − LATE (X)D|T = ne, Z,X}Pr (T = ne|Z,X)

= E {Y − LATE (X)D|T = co, Z,X}Pr (T = co|Z,X) +

{E (Y1|T = at,X)− LATE (X)}Pr (T = at|X) +

E (Y0|T = ne,X)P (T = ne|X)

= E (Y0|T = co,X)P (T = co|X) +

{E (Y1|T = at,X)− LATE (X)}P (T = at|X) +

E {Y0|T = ne,X}P (T = ne|X)

= E (Y0|X)− E (Y0|T = at,X)P (T = at|X)

+ {E (Y1|T = at,X)− LATE (X)}P (T = at|X)

= E (Y0|X) + {E (Y1 − Y0|T = at,X)− LATE (X)}P (T = at|X) .

Next, note that

E {Y − LATE (V )D|Z,X} =

= E {Y − LATE (X)D|Z,X}+ E [{LATE (X)− LATE (V )}D|Z,X]

= E {Y − LATE (X)D|Z,X}+ {LATE (X)− LATE (V )}E (D|Z,X) .

Furthermore, E (D|Z = 1, X) = P (T = at orT = co|X) and E (D|Z = 0, X) =
P (T = ne|X). Thus, with H1 = Y −D × LATE (V )

E (H1|z,X)

= E {Y − LATE (v)D|Z = z,X}
= E (Y0|X) + {E (Y0 − Y1|X,T = at)− LATE (X)}Pr (T = at|X)

+ {LATE (X)− LATE (V )} {z Pr (T ∈ {at, co} |X) + (1− z) Pr (T = ne|X)} .
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